Completion of a catalytic cycle of zirconium-catalyzed alkylation of silanes by addition of organic halides

Yasuyuki Ura, Ryuichiro Hara and Tamotsu Takahashi*

Catalysis Research Center and Graduate School of Pharmaceutical Sciences, Hokkaido University; and CREST, Science and Technology Corporation (JST) Sapporo 060-0811, Japan. E-mail: tamotsu@cat.hokudai.ac.jp

Received (in Cambridge, UK) 28th March 2000, Accepted 11th April 2000

A catalytic cycle in zirconium-catalyzed alkylation of silanes with secondary Grignard reagents was completed by addition of organic halides which were not incorporated in the products.

We have found and reported catalytic cycles containing a Zr(II) species and zirconacycles in carbon-carbon bond formation by the reaction of olefins and/or acetylenes with Grignard reagents.¹⁻⁵ One principle of the Zr(II)-mediated or -catalyzed reactions is the use of facile interchange of its oxidation states, II and IV. The zirconium(II) species is known to be of good π electron accepting ability and oxidatively couples two unsaturated organic molecules. During the coupling reaction, the Zr(II) species is converted into Zr(IV). On these bases, zirconium(II)-catalyzed reactions have been developed involving olefins¹⁻⁴ and, in some cases, acetylenes.⁵ We also reported not only unsaturated substrates but also dihydrogen² or silanes³ as partners of unsaturated compounds such as olefins. During our investigations of zirconium-mediated alkylation reactions of silanes, we found that addition of organic halides led to a catalytic cycle in which the organic halides were not incorporated in the products. Herein, we report a novel type of catalytic cycle in alkylation of silanes with secondary Grignard reagents using zirconium.

It is well known that when H_2SiPh_2 is treated with Pr^nMgBr in THF at room temperature, a nearly quantitative yield of $Pr^nSi(H)Ph_2$ **1** is obtained [eqn. (1)].⁶ It is interesting that

$$MgBr + H_2SiPh_2 \longrightarrow SiHPh_2$$
1a (1)
90%

 H_2SiPh_2 does not react at all with the more sterically hindered Pr^iMgBr under the same conditions [eqn. (2)].

$$\downarrow_{MgBr} + H_2SiPh_2 \longrightarrow \left(\downarrow_{SiHPh_2} \right)$$
(2)

However, we found that when a stoichiometric amount of $(C_5H_5)_2ZrCl_2$ was added in the presence of a two-fold amount of PrⁱMgBr, the reaction of H₂SiPh₂ with PrⁱMgBr proceeded to give **1a**, instead of the expected product PrⁱSi(H)Ph₂ **2** [eqn. (3)]. A stoichiometric amount of $(C_5H_5)_2ZrCl_2$ is required

$$2 \xrightarrow{I}_{MgBr} + H_2SiPh_2 + (C_5H_5)_2ZrCl_2 \xrightarrow{I}_{96\%} 1a + (C_5H_5)_2Zr'$$
(3)

since the outcome of the reaction is explained by the total conversion to **1a**, $(C_5H_5)_2Zr$, $n-C_3H_8$ and 2 equiv. of MgX₂. Since the Prⁱ group was changed to an Prⁿ group in the product, it is reasonable to consider that the Prⁱ group is converted into propene on zirconium and then reacts with silane to afford PrⁿSi(H)Ph₂ and the Zr(II) species.

In order to extend this stoichiometric reaction to a catalytic reaction, oxidation of the built-up $Zr(\pi)$ species was investigated. We found that certain organic halides were suitable for

oxidation of the ' $(C_5H_5)_2$ Zr' species *via* oxidative addition^{7–9} and tolerate the reaction conditions.

Under catalytic conditions, typically 10 mol% of $(C_5H_5)_2ZrCl_2$ and 1 equiv. of an organic halide were employed [eqn. (4)]. The results of a comparison study using various

$$R \xrightarrow{H_2SiPh_2} H_2SiPh_2 \xrightarrow{(C_5H_5)_2ZrCl_2 \text{ (cat.)}}_{H'X (1 \text{ eq})} R \xrightarrow{SiHPh_2} H_2 (4)$$

organic halides as additives are shown in Table 1 As a control experiment, when no organic halide was added, the reaction gave only 22% yield of Pr^nSiHPh_2 **1a**. When 1 equiv. of bromoor iodo-propane was added, the desired product was obtained in 67 and 91% yield, respectively. This remarkable improvement clearly showed that a catalytic cycle was achieved. The best result of 99% yield was obtained when 1,3-dibromopropane was used as the additive. Though bromobenzene, bromopropane and iodopropane showed fairly good performances, iodobenzene showed a very poor effect on this reaction, which may be due to the readily occurring deiodination.⁹ 1,3-Dibromopropane was the best choice by far as additive and the reaction proceeded with as little as 2 mol% of the catalyst. In the absence of $(C_5H_5)_2ZrCl_2$ **1a** was not formed.

Similarly, when H_2SiPh_2 was treated under the same conditions with 2 equiv. of Bu^sMgCl, BuⁿSiHPh₂ **1b** was obtained in 89% yield. In spite of our attempts, tertiary Grignard reagents such as Bu^tMgCl or secondary Grignard reagents such as cyclohexylmagnesium bromide did not successfully promote this reaction owing, probably, to the instability of the corresponding disubstituted-olefin zirconium complexes.

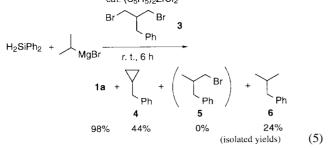
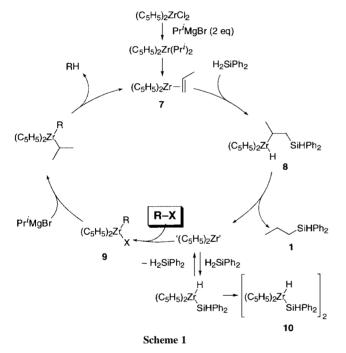

To understand the role and the superiority of 1,3-dibromopropane, 2-benzyl-1,3-dibromopropane **3** was used as an

Table 1 Reactions of PrⁱMgBr with H₂SiPh₂ in the presence of a catalytic amount of $(C_5H_5)_2$ ZrCl₂ and various organic halides^{*a,b*}

Entry	R'X	Cp ₂ ZrCl ₂ / Time/h eq		Yield $(\%)^c$
1	_	0.1	24	22
2	1-Bromopropane	0.1	6	67
3	1-Iodopropane	0.1	6	91
4	1,3-Dibromopropane	0.1	3	99
5	1,3-Dibromopropane	0.02	24	93
6	1,3-Dibromopropane	0.01	18	41
7	1,3-Diiodopropane	0.1	3	3
8	Bromobenzene	0.1	6	78
9	Iodobenzene	0.1	1	2^d
10	2-Bromopropene	0.1	24	73


^{*a*} R = Me, corresponding to eqn. (4). ^{*b*} Typical reaction conditions: H_2SiPh_2 (0.5 mmol), (C₅H₅)₂ZrCl₂ (as indicated), PrⁱMgBr (1.5 mmol), R'X (0.5 mmol); room temp.^{*c*} Yields were determined by GC.^{*d*} PhI was consumed in 1 h and further reaction did not proceed.

oxidation reagent and the catalytic reaction was carried out [eqn. (5)]. A mixture of three products, benzylcyclopropane 4 cat. $(C_5H_5)_2ZrCl_2$

and reduction products **5** and **6** were obtained with **5** observed at an early stage. After completion of the reaction, two products, **4** and **6** were obtained in 44 and 24% yields, respectively. The formation of the major product **4** is explained by an oxidative addition of one carbon–bromine bond of **3** to the zirconium(II) species, followed by nucleophilic ring closure forming a cyclopropane ring and $(C_5H_5)_2ZrBr_2$.

On the basis of these observations, the mechanism of Scheme 1 is proposed. Zirconium–olefin complex 7 is formed and reacts with H₂SiPh₂ ($7 \rightarrow 8$). Reductive elimination of the silylated compound gives PrⁿSiHPh₂ 1. The so-formed '(C₅H₅)₂Zr'

reacts with an alkyl bromide (RX) to give **9**,⁷ followed by ligand exchange with PrⁱMgBr and β -hydride elimination to regenerate (C₅H₅)₂Zr(C₃H₆) **7**. Alternatively, oxidation of '(C₅H₅)₂Zr' with alkyl bromides might afford (C₅H₅)₂ZrX₂ which is also converted into **7** by the reaction with PrⁱMgBr. An alkyl bromide plays an important role in reoxidizing the zirconium(π) species to zirconium(τ). In its absence, regeneration of the catalyst does not occur and '(C₅H₅)₂Zr' reacts with H₂SiPh₂ leading to the μ -hydride bridged dimer **10**.^{3a}

One-pot reaction of H_3SiPh with 3 PrⁱMgBr without a catalyst for 1 h followed by the addition of 10 mol% of $(C_5H_5)_2ZrCl_2$ and 1,3-dibromopropane selectively afforded $HSi(Pr^i)(Pr^n)Ph$ **11** in 66% yield [eqn. (6)]. An Prⁱ group was

$$H_{3}SiPh \xrightarrow{i) \ MgBr} (3 eq), r. t., 1 h$$

$$H_{3}SiPh \xrightarrow{ii) cat. (C_{5}H_{5})_{2}ZrCl_{2}/Br(CH_{2})_{3}Br, r. t., 6 h}_{66\%} \xrightarrow{i}_{H} Si (6)$$

incorporated directly from the Grignard reagent in the absence of the catalyst, and an Pr^n group was incorporated after the addition of the zirconium catalyst with 1,3-dibromopropane.

We conclude that a zirconium(π) species is efficiently oxidized by organic halides, which assists regeneration of the active catalyst. We believe this is the first example of a zirconium(π)-catalyzed reaction in which an oxidant is explicitly added to complete the catalytic cycle. Further studies to clarify the mechanism are in progress.

Notes and references

- 1 T. Takahashi, T. Seki, Y. Nitto, M. Saburi, C. J. Rousset and E. Negishi, J. Am. Chem. Soc., 1991, **113**, 6266.
- 2 T. Takahashi, N. Suzuki, M. Kageyama, Y. Nitto, M. Saburi and E. Negishi, *Chem. Lett.*, 1991, 1579.
- 3 (a) T. Takahashi, M. Hasegawa, N. Suzuki, M. Saburi, C. J. Rousset and E. Negishi, *J. Am. Chem. Soc.*, 1991, **113**, 8564; (b) J. Y. Corey and X.-H. Zhu, *Organometallics*, 1992, **11**, 672; (c) M. R. Kesti and R. M. Waymouth, *Organometallics*, 1992, **11**, 1095.
- 4 N. Suzuki, D. Y. Kondakov and T. Takahashi, J. Am. Chem. Soc., 1993, 115, 8485.
- 5 K. Kasai, Y. Liu, R. Hara and T. Takahashi, *Chem. Commun.*, 1998, 1989.
- I. Fleming, Organic Silicon Chemistry in Comprehensive Organic Chemistry, ed. D. Barton and W. D. Ollis, Pergamon, Oxford, 1979, vol.
 p. 541; R. N. Meals, J. Am. Chem. Soc., 1946, 68, 1880; W. H. Nebergall, J. Am. Chem. Soc., 1950, 72, 4702.
- 7 G. M. Williams, K. I. Gell and J. Schwartz, J. Am. Chem. Soc., 1980, 102, 3660.
- 8 T. Takahashi, M. Kotora, R. Fischer, Y. Nishihara and K. Nakajima, J. Am. Chem. Soc., 1995, **117**, 11039.
- 9 R. Hara, W.-H. Sun, Y. Nishihara and T. Takahashi, *Chem. Lett.*, 1997, 1251.